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Abstract. We discuss the ground state and some excited states of the half-filled Hubbard model
defined on an open chain withL sites, where only one of the boundary sites has a different value
of chemical potential. We consider the case when the boundary site has a negative chemical
potential−p and the Hubbard couplingU is positive. By an analytic method we show that
whenp is larger than the transfer integral some of the ground-state solutions of the Bethe ansatz
equations become complex-valued. It follows that there is a ‘surface phase transition’ at some
critical valuepc; whenp < pc all the charge excitations have the gap for the half-filled band,
while there exists a massless charge mode whenp > pc.

The Mott-insulator transition is a fundamental phenomenon where the strong correlation
among electrons plays an essential role. The existence of the insulating phase, which we
call the Mott insulator, cannot be explained within the standard framework of the band
theory. For the one-dimensional (1D) Hubbard model, it is well known that under the
periodic boundary condition the charge gap exists only for the positive Hubbard coupling
U > 0 and at half-filling [1]. Near the transition point, however, the system shows quite
nontrivial many-body effects [2–5]. For instance, the effective mass diverges at half-filling
for the Hubbard ring [2].

In order to investigate many-body effects near the transition point very precisely, let us
consider a Hubbard chain in which only one site has a different chemical potential. With
the local chemical potential we can effectively change the number of electrons (or holes)
of the Mott insulator,infinitesimally. Let us assumeL electrons in the Hubbard chain with
L sites. The system is divided into two parts; a ‘surface’ part consisting of only the site
with the local chemical potential, and a ‘bulk’ part of the otherL−1 sites. When the local
potential is zero, the number of electrons in the bulk part is given byL−1; when it is very
large, no electron should occupy the surface site and hence all the electrons should be in
the bulk part. Thus, by controlling the parameter, the effective number of electrons in the
bulk part (L− 1 sites) can be changed continuously fromL− 1 to L. The property of the
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electrons in the bulk part is unique: if we consider a standard closed system, the electron
number will be given by some integer and cannot increase or decrease infinitesimally.

In this paper, we consider the Hubbard system defined on an open chain, where one of
the two boundary sites is chosen as the surface site. We discuss how the half-filled ground
state changes under the local chemical potential. We derive complex ground-state solutions
of the Bethe ansatz equations by an analytic approach. We find them explicitly for some
finite-size systems, solving the Bethe ansatz equations numerically. Then, we calculate the
energy of the ground state with the complex solutions, analytically. It is our hope that the
study of this paper might shed some light on some new aspects of the many-body effects
of the Hubbard system near the metal–insulator transition.

The study of this paper could be related to some real 1D systems such as Cu–O chain
[6] and quantum or atomic wires [7, 8]. The open-boundary 1D Hubbard system with the
boundary chemical potential could be realized in some 1D Hubbard system in reality, where
the local chemical potential may play the role of a nonmagnetic impurity or a bias potential.

Let us introduce the 1D Hubbard Hamiltonian under the open-boundary condition, in
which only the first site has the local chemical potential−p.

H = −t
L−1∑
j=1

∑
σ=↑,↓

(c
†
jσ cj+1σ + c†j+1σ cjσ )+ U

L∑
j=1

nj↑nj↓ + p
∑
σ=↑,↓

n1σ . (1)

Herecj,σ andnj,σ stand for the annihilation and number operators of electron located at the
j th site with spinσ , respectively. We recall thatU denotes the Hubbard interaction andt
the transfer integral. Hereafter we sett = 1. The Bethe ansatz equations for the 1D Hubbard
model have been discussed under some different cases of open-boundary conditions [9–12]
(see also [13]). In this paper we discuss the open-boundary Hubbard system withp > 0.

For N electrons withM down spins, the roots of the Bethe ansatz equations are given
by momenta (charge rapidities)kj for j = 1 to N and rapidities (spin rapidities)vm for
m = 1 to M. With some functionsZcL(k) andZsL(v), the Bethe ansatz equations can be
written as

ZcL(kj ) = Ij /L for j = 1, . . . , N ZsL(vm) = Jm/L for v = 1, . . . ,M. (2)

Here the quantum numbersIj andJm are given by some integers.
Let us consider the half-filled band under the boundary chemical potential, whereN = L

andM = L/2. Hereafter we assume thatL is even. We consider analytic continuations
of the functionsZcL(k) andZsL(v) with respect to the parameterp. Let us introduce an
adiabatic hypothesis that the quantum numbersIj and Jm should be constant when we
continuously change the parameterp. Under the hypothesis, all the solutions of the Bethe
ansatz equations can be labelled by their quantum numbers. Whenp = 0, we can order
the ground-state rootskj ’s and vm’s such thatIj = j for 1 6 j 6 L and Jm = m for
1 6 m 6 L/2. The hypothesis is consistent with our analytic arguments and numerical
results. Thus, for any value ofp, the quantum numbers of momentumkj and rapidityvm
are given byj andm, respectively.

We now consider the Bethe ansatz equations more explicitly. Let us denote byImax

(Imin) the largest (smallest) integer of the quantum numbers of real momenta over all possible
excitations and byJmax (Jmin) that of real rapidities. Then, the set1c

re (1s
re) of all the possible

quantum numbersIj ’s (Jm’s) for real momenta (rapidities) are given by

1c
re = {Imin, Imin+ 1, . . . , Imax} (1s

re = {Jmin, Jmin+ 1, . . . , Jmax}). (3)

Let us write by1c
hole (1s

hole) the set of the quantum numbers of holes of real momenta
(rapidities) in the ground state. Then, the set of the quantum numbers of the real momenta
(rapidities) for the ground state is given by1c

g = 1c
re−1c

hole (1s
g = 1s

re−1s
hole). Let us
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denote byI gmax (J gmax) the largest integer of the set1c
g (1s

g). Then,I gmax6 Imax, in general.
We introduce the symbol1c

im (1s
im) for the set of the quantum numbers for complex-valued

momenta (rapidities) in the ground state. In terms of the symbols, the functionsZcL(k) and
ZsL(v) for the ground state are written as follows:

ZcL(k) =
2k

2π
+ 1

L

∑
n∈1sg

∑
r=±1

θ1(sink − rvn)+ 1

L
zcB(k)

ZsL(v) =
1

L

∑
j∈1cg

∑
r=±1

θ1(v − r sinkj )− 1

L

∑
n∈1sg

∑
r=±1

θ2(v − rvn)+ 1

L
zsB(v)

(4)

where the functionszcB(k) andzsB(v) are given by

zcB(k) =
2k

2π
− 1

2π i
log

(
1+ peik

1+ pe−ik

)
+
∑
m∈1sim

∑
r=±1

θ1(sink − rvm)

zsB(v) = θ1(v)+
∑
j∈1cim

∑
r=±1

θ1(v − r sinkj )−
∑
m∈1sim

∑
r=±1

θ2(v − rvm).
(5)

Here, the functionsθn(x) have been defined byθn(x) = 2 tan−1 (x/(nu)) /(2π), whereu is
given byu = U/4. An outline of the derivation of the Bethe ansatz equations is given in
appendix A.

When p is larger than some critical values ofp, some of the ground-state solutions
become complex-valued. The number of complex roots is different for four regions of
p, which are divided by the critical valuespcj ’s. They are given bypc1 = 1, pc2 =
u+√1+ u2, pc3 = 2u+√1+ 4u2. Let us introduce some notation. We define symbolκ

by κ = log |p| for p > 0 andp < 0. We also defineα by α = sinhκ/u for p > 0 andp < 0.
The notation of the critical points is summarized aspcj = (j − 1)u+

√
1+ (j − 1)2u2 for

j = 1, 2, 3. If a set1 is empty, we denote it by1 = φ. Then, the sets of quantum numbers
are given by the following.

(1) For 0< p < pc1, we have no boundary solutions. The sets of quantum numbers
are given by

1c
g = {1, 2, . . . , L} 1s

g = {1, 2, . . . , L/2}
1c

im = 1s
im = 1c

hole= 1s
hole= φ.

The Imin’s are given by the following

Imin = 1 Imax= L Jmin = 1 Jmax= L/2.
(2) For pc1 < p < pc2 (0 < α < 1), we have a complex-valued momentumkL given

by

kL = π + iκ − iδL. (6)

The sets of quantum numbers are given by

1c
g = {1, . . . , L− 1} 1s

g = {1, 2, . . . , L/2}
1c

im = {L} 1s
im = 1c

hole= 1s
hole= φ.

The Imin’s are given by the following:

Imin = 1 Imax= L− 1 Jmin = 1 Jmax= L/2.
(3) For pc2 < p < pc3 (1 < α < 2), we have the complex momentumkL and the

complex rapidityv1 given by

kL = π + iκ − iδL
v1 = i(α − 1)u+ iη1.

(7)
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The sets of quantum numbers are given by

1c
g = {1, . . . , L− 1} 1s

g = {2, . . . , L/2}
1c

im = {L} 1s
im = {1} 1c

hole= 1s
hole= φ.

The Imin’s are given by the following:

Imin = 1 Imax= L− 1 Jmin = 2 Jmax= L/2.
(4) Forpc3 < p (2< α), we have the following three complex rootsk1, kL andv1

k1 = i log
(
(α − 2)u+

√
(α − 2)2u2+ 1

)
+ iδ1

kL = π + iκ − iδL
v1 = i(α − 1)u+ iη1.

(8)

We call them aboundaryk −3 string. The sets of quantum numbers are given by

1c
g = {2, 3, . . . , L− 1} 1s

g = {2, 3, . . . , L/2}
1c

im = {1, L} 1s
im = {1} 1c

hole= {L} 1s
hole= φ.

The Imin’s are given by the following:

Imin = 2 Imax= L Jmin = 2 Jmax= L/2.
We note that whenp > pc3, a hole of real momenta appears in the half-filled ground state
at I = L; I gmax = L− 1 andImax = L whenp > pc3. We also note thatδ1, δL andη1 are
exponentially small except for some neighbourhoods of the critical points. For instance, we
can showδ1 = O(p−2L) for pc1 < p < pc2. The quantitiesδL, δ1 and η1 are explicitly
evaluated in appendix B.

For the case whenp < 0, some complex boundary solutions have been discussed for
the 1D Hubbard model under the open-boundary conditions [14–16], where the quantum
numbers of the complex rapiditiesk′1, k′2 andv′1 correspond toI1 = 1, I2 = 2 andJ1 = 1,
respectively. Furthermore, when the bandwidth 4t is very large and the electron densityN/L
is very small, the boundary solutionsk′1, k′2 andv′1 for the case ofp < 0 can correspond to
the boundary solutions of the 1D interacting spin-1

2 Fermi system, which had been discussed
in [17] (see also appendix B).

For the half-filling case, the ground-state energy forp > 0 is related to that of
p < 0 through the particle–hole transformation, which will be discussed in appendix C.
For instance, the energy of the ground state forp > pc3 with the boundary solutionskL, k1

andv1, is transformed into that ofp < −pc3 with k′1, k′2 andv′1. However, it seems quite
nontrivial how the two sets of the charge rapidities for the two cases ofp > 0 andp < 0
could be related to each other (see also appendix C).

Let us show that momentumkL which is real-valued whenp < pc1 becomes complex-
valued whenp > pc1. First, we note that whenk is real and|π − k| � 1, we have

1

2π i
log

(
1+ peik

1+ pe−ik

)
= H(p − pc1)+ 2

2π
tan−1

(
p sin(π − k)

1− p cos(π − k)
)

(9)

whereH(x) denotes the Heaviside step-function:H(x) = 0 for x < 0 andH(x) = 1 for
x > 0. Suppose that momentumkL be real even whenp > 1. SincekL is close toπ ,
we haveZcL(kL) = kL/π + zcB(kL)/L. It follows from (9) that the value ofzcB(kL) for
p > 1 is by 1 smaller than that of the case whenp < 1: zcB(kL) = kL/π − 1+ O(1/L)
for p > 1. Thus, we haveIL/L = kL/π + (kL/π − 1)/L + O(1/L2), which leads to
kL = π + O(1/L2) for IL = L. However, whenk = π the wavefunction should vanish
under the open-boundary condition. Thus, we arrive at an inconsistency. Therefore, the
momentumkL should be complex-valued whenp > 1.
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We can show thatv1 becomes imaginary whenp > pc2. Let us take the following
branch of the logarithmic function:−i log(e(x)) = π − 2 tan−1(x), wheree(x) denotes
e(x) = (x + i)/(x − i). Then, we can show∑

r=±1

θn(v + r iγ u) =
{
θγ+n(v)+ θn−γ (v) for γ < n

θγ+n(v)+ 1− θγ−n(v) for γ > n.
(10)

Applying the formula (10) withγ = α to the functionzsB(v), we can show that if we assume
the smallest rapidityv1 to be real, then it would be O(1/L2) for p > pc2, and also that
therefore it should be imaginary whenp > pc2. In the same way with the rapidityv1, using
the formula (10) we can also show that momentumk1 becomes imaginary whenp > pc3.

We can evaluate the largest and smallest integers of all the possible quantum numbers
for real momenta in the following way. The functionZcL(k) is monotonically increasing
with respect tok, since the density of real momenta should be non-negative. We note that
under the open-boundary condition, the Bethe ansatz wavefunction should vanish if there
exists a momentum ofk = 0 or π . Thus, the equations forImin andImax are given by

ZcL(0) = (Imin− 1)/L ZcL(π) = (Imax+ 1)/L. (11)

We determineImin and Imax by solving equations (11). For instance, for the case when
06 p < 1, it is easy to seeZcL(0) = 0 andZcL(π) = (L+1)/L, so that we obtainImin = 1
andImax= L.

For real rapidities, we can obtainJmin andJmax by applying the argument in [18]. It is
easy to show that they satisfy the following equations:

ZsL(0) = (Jmin− 1)/L ZsL(∞) = (Jmax+ 1)/L. (12)

Solving equations (12) we determineJmin andJmax. For example, let us consider the case
pc2 < p < pc3. From equations (4) and (5) we can showZsL(∞) = 1+ (1− Jmax)/L.
Thus, we obtainJmax= L/2. We can discuss the maximal and minimal quantum numbers
also for some excited states with boundary solutions, similarly. Some details are given in
appendix D.

The new hole appears in the half-filled band, whenp > pc3. Therefore, there is a
gapless mode of particle–hole excitations for the half-filled ground state under the open-
boundary condition. Let us give an explanation. The quantum number of the hole is given
by L for the ground state, while for the charge excited state it is given by an integer less
thanL. Thus, the charge excitation energy for the excited state where the quantum number
of the hole is close toL (for example,L− 1) becomes infinitesimally small when we take
the thermodynamic limitL→∞. Here we have assumed that the charge excitation energy
should be continuous with respect to the hole rapidity. Furthermore, the new hole is a
consequence of the formation of the boundaryk −3 string. We recall that the number of
possible real momenta in the band is given byL − 1, sinceImax = L and Imin = 2 when
p > pc3. We also recall that there are onlyL− 2 real momenta in the wavefunction since
we have two complex momentak1 andkL. Thus, there should be one hole in the band.

We can explicitly calculate the energyEex
L of the charge excited state with the new hole,

applying the method [19] of the finite-size correction as we shall see later. Let us denote
by kh the charge rapidity of the new hole. Then it is given by

Eex
L = EgL − 2ec(kh)+ 2ec(π) (13)

whereEgL denotes the ground-state energy forp > pc3 andec(k) is the dressed energy [19]
for the half-filled band given by

ec(k) = −A
2
− cosk −

∫ ∞
−∞

e−uωJ1(ω) cos(ω sink)

ω coshuω
dω. (14)
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The expression of the chemical potentialA at the half-filling will be given later in (24).
From the expression of the excited energy (13)† we see that the gap energy of the mode is
of the order of 1/L2. Thus, by taking the thermodynamic limitL → ∞, the gap energy
vanishes. In this sense, we may call the mode gapless.

The three boundary complex solutions forp > pc3 can be considered as a variant of
k − 3 string that was originally defined for the periodic Hubbard model. In fact, we can
derive the expressions (8) of the boundaryk−3 string from the viewpoint of classification
of k −3 strings of lengthn = 1. Details will be discussed in later papers.

Let us explicitly study for a finite-size system the behaviours of momenta and rapidities
with respect to the boundary chemical potential. In figure 1, the flows of momenta and
rapidities are plotted versus the parameterp for the eight-sited Hubbard Hamiltonian under
the open boundary condition, where the roots are obtained numerically by solving the Bethe
ansatz equations withL = N = 8 andM = 4. As far as the finite-size systems we
have investigated are concerned, the numerical solutions are consistent with the following
consequences of the analytic approach: the complex solutions are formed one-by-one at the
critical points of the parameterp; there is a charge hole whenp > pc3. This is nontrivial.
The analytic method should be valid only when the system size is very large. However,
these important properties are already observed in such a small system as the case ofL = 8.

Let us explain how we apply to our system the method [19] of the finite-size correction.
We consider the HamiltonianH′ = H−AN−h(N−2M)/2 whereA andh are the chemical
potential and the uniform magnetic field, respectively. In order to define densities of the
roots of the Bethe ansatz equations, we extendZcL(k) andZsL(v) into odd functions defined
both on positive and negative values of their variables. For an illustration, we consider the
density of real-valued rapidities. When 06 p < pc2, we haveZsL(0) = 0 and the function
ZsL(v) itself can be simply extended into an odd function ofv by ZsL(−v) = −ZsL(v)
for v > 0. We define rapidity with negative suffix byv−m = −vm for m = 1, . . . , L/2.
Then, the density of the real rapidities is given by the derivativeρsL(v) = dZsL(v)/dv for
−∞ < v < ∞. When pc2 < p, however, the function does not vanish at the origin:
ZsL(0) = 1/L. In this case, we introduce some shifts of the function and the variable
Z̃sL(v) = ZsL(v)− 1/L and ṽm = vm+1, respectively. We also introduce rapidity of negative
suffix by ṽ−m = −ṽm, for m > 0. Then, the Bethe ansatz equations are given by

Z̃sL(ṽm) = J̃m/L for m = −J̃ gmax, . . . , J̃
g
max (15)

where J̃m = m and J̃ gmax = J gmax− 1. Then, we can safely define the density of rapidities
by the derivativeρsL(ṽ) = dZ̃sL(ṽ)/dṽ.

Taking the derivatives of the Bethe ansatz equations together with some continuous
limits, we can systematically derive a set of equations for the densities of the system with
L sites. For the half-filled band under zero magnetic field, the set of equations for the
densities up to O(1/L) is given in the following:

ρcL(k) =
1

π
+ 1

L
τc(0)(k)+ cosk

∫ ∞
−∞

a1(sink − v)ρsL(v) dv +O(1/L2)

ρsL(v) =
1

L
τs(0)(v)+

∫ π

−π
a1(v − sink)ρcL(k) dk

−
∫ ∞
−∞

a2(v − v′)ρsL(v′) dv′ +O(1/L2).

(16)

Here an(x) is defined by 2πan(x) = (2nu)/(x2 + (nu)2). The boundary termsτ c(0)(k)

† Expression (13) can be derived from the formula (18) by replacing the hole momentumk
g

h of the ground state
by that of the excited state.
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Figure 1. (a) Flow of momenta (or charge rapidities) as a function of boundary potential (p)
for the one-dimensional open Hubbard model with eight sites at the half-filling (N = L) and
U = 20t . Full curves represent real momenta. Atp = pc1 ∼ t , the largest charge rapidity
approachesπ and becomes complex,π + iκ, whose complex part is given by the broken curve,
for p > pc1. Beyondp = pc3 ∼ U , the smallest momentum becomes complex,−iκ ′, where
κ ′ is represented by the chain curve. (b) Flow of rapidities (or spin rapidities) for the same
system. Full curves represent real rapidities. Atp = pc2 ∼ U/2, the smallest rapidity becomes
complex, iχ , whereχ is given by the broken curve.

andτ s(0)(v) in equations (16) are given by the derivatives ofP0(k)/(2π) andQ0(v)/(2π),
respectively, where they are related tozcB(k) andzsB(v) by

P0(k)/2π = zcB(k)− θ1(sink) Q0(v)/2π = zsB(v)− θ1(v)+ θ2(v). (17)

We now evaluate the ground-state energyE
g

L of the HamiltonianH′ at half-filling under
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zero magnetic field. From equations (16) we have the following

E
g

L = −
∑
j∈1cg

2 coskj −
∑
j∈1cim

2 coskj − AN

= Le∞ + 1+ A/2+ (e, τ (0))−
∑
h∈1chole

2ec(kgh)

−
∑
j∈1cim

(A+ 2 coskj )+O(1/L) (18)

where τ (0)(k, v) = (τ c(0)(k), τ s(0)(v)) denotes the surface density, the symbole =
(ec(k), es(v)) denotes the dressed energy [19, 11]. We recall thatk

g

h ’s denote the momenta
of possible holes at the ground state. (For the ground state ofp > pc3, we have only one
hole.) The inner product(e, τ (0)) is defined by the following [19, 11]:

(e, τ (0)) =
∫ π

−π
ec(k)τ c(0)(k) dk +

∫ ∞
−∞

es(v)τ s(0)(v) dv. (19)

Let us define the surface energyesur of the system by the O(1) part of the ground-state
energy. Then it is given in the following.

(1) For 0< p < 1,

econ+ p −
∞∑
n=0

p2n
∫ ∞

0

2e−uωJ1(ω)J2n(ω)

ω coshuω
dω. (20)

(2) For 1< p < pc3,

econ+ p −
∫ ∞

0

2e−uω cosh(ω sinhκ)J1(ω)

ω coshuω
dω +

∞∑
n=1

1

p2n

∫ ∞
0

2e−uωJ1(ω)J2n(ω)

ω coshuω
dω. (21)

(3) Forpc3 < p,

econ+ 4u− A− 1

p
+
∞∑
n=1

1

p2n

∫ ∞
0

2e−uωJ1(ω)J2n(ω)

ω coshuω
dω. (22)

Here the symbolecon denotes the surface energy forp = 0, which is explicitly given by

econ= (1− A/2)+ 2
√

1+ u2− 2u−
∫ ∞

0

e−2uωJ1(ω)

ω coshuω
dω. (23)

The chemical potentialA at half-filling is given by

A = 2− 2
∫ ∞

0

e−uωJ1(ω)

ω coshuω
dω. (24)

Let us discuss the ground-state energy for the strong-coupling case. Whenp > pc3, it
becomes close to the energy of the first charge-excited state forp = 0. We compare the
surface energy forp = 0 given by equation (20) with that ofp > pc3 given by equation (22).
Then, the main part of the difference between them is given by 4u = U , which is almost
equivalent to the charge-gap energy 4u− 2A at p = 0. We note that whenu� 1, we have
pc3� 1 andu� A.

Under the strong-coupling condition, the main part of the surface energy is given by
the following: p + econ when 1� p < pc3 and 4u − 2A + econ whenp > pc3. From the
calculation of the ground-state energy, we can evaluate the average numbern1 of electrons
on the first site, since it is defined byn1 = ∂EL/∂p. We find that∂EL/∂p ≈ 1 for
1 � p < pc3 and ∂EL/∂p ≈ 0 for pc3 < p. This suggests that one hole should be
localized at the surface site whenp > pc3. The result is consistent with the discussion
over the complex boundary solutions that the half-filled ground state has gapless charge
excitations whenp > pc3 since one hole appears in the band.
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Figure 2. Spectral flow for the six-site open
Hubbard chain at the half-filling withU = 20t as
a function of boundary potentialp. Dots denote all
of the eigenvalues for this system obtained by direct
diagonalization. The lower full curve represents
the ground-state energy given by the Bethe ansatz.
The upper full curve corresponds to the first charge-
excited state, which can be traced back fromp =
pc3 to p = 0; at p = 0, it is the lowest level
beyond the charge gap. Enlarged flow around the
gap-closing transition point is depicted in the inset.
Below a critical point (pc3), a charge gap exists
above the continuum of low-energy spin excitations.

Let us discuss the spectrum of a finite-size system numerically. The excited spectrum
of the six-sited open Hubbard Hamiltonian withU = 20t is obtained by the exact numerical
diagonalization of the Householder method. The spectral flows with respect to the parameter
p are depicted in figure 2, where we see that the energy levels of charge excitations become
close to the ground-state energy atp = pc3.

From figures 1 and 2, we have the following observations, respectively. (i) When
p > pc3 the first charge-excited state can be obtained by shifting the position of the hole
in the band of real momentakj ’s; such shifting is equivalent to taking a different quantum
number for the hole. (ii) The energy level of the first charge-excited state forp > pc3 is
identified with that of the lowest state above the charge gap forp = 0; we can trace the
spectral flow of the excited state fromp = pc3 down top = 0 in figure 2. From the analytic
approach, the observation (ii) should hold due to the adiabatic hypothesis on the quantum
numbers. From (i) and (ii), we can say that the characteristic properties of the energy
spectrum discussed by the analytic method are also in common with that of the finite-size
system. Thus, the spectrum of the six-sited system may illustrate that of thermodynamically
large systems.

In this paper we have discussed the boundary solutions for the half-filled band when
p > 0. We have shown that whenp > pc3 one mode of charge excitations has the gap
energy of the order of 1/L2; we call it massless since the gap vanishes in the thermodynamic
limit. By the method of the finite-size correction, we have calculated the ground-state energy
and the excited energy of the massless mode. We note that it is not difficult to derive explicit
formulae for the energies of other excitations. In fact, the whole spectrum shown in figure 2
can be explained analytically. Details will be given in the next paper [20].
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Appendix A

Let us briefly outline the derivation of the Bethe ansatz equations through the algebraic
Bethe ansatz method for the open-boundaryXXZ model given by Sklyanin. Some details
can be found in [11] (see also [13]). We write the eigenstates forN electrons withM
down-spins as

9NM =
∑

fσ1,...,σN (x1, . . . , xN)c
†
x1σ1

. . . c†xNσN |vac〉. (A.1)

Here, xj and σj are the position and spin variables of the electrons, respectively. In the
regionxQ1 6 · · · 6 xQN , we assume that the Bethe ansatz wavefunctionf takes the form

fσ1,...,σN (x1, . . . , xN) =
∑
P

εPAσQ1,...,σQN (kP1, . . . , kPN) exp

{
i
N∑
j=1

kPjxQj

}
. (A.2)

Here theQ is an element ofSN , the permutation group ofN particles, andP runs over all
the permutations and the ways of negations ofk′s; there areN ! × 2N possibilities forP ,
while N ! for Q. We employ the notation:k−j = −kj . The symbolεP denotes the sign of
P ; if the permutation is even,P makesεP = −1 when odd number ofk’s are negative and
εP = 1 when even number ofk’s are negative. Let us introduce the vectorA(kj1, . . . , kjN )

such that its element for entry(Q1, . . . ,QN) is given byAσQ1,...,σQN (kj1, . . . , kjN ). Here
we note that the suffixj1, . . . , jN can be written asP1, . . . , PN , respectively, by some
P . Then, we can show that the consistency condition for the amplitudesA(kj1, . . . , kjN ) is
given by the following

T (sinkP1)A(kP1, . . . , kPN) = A(kP1, . . . , kPN). (A.3)

HereT (u) is the inhomogeneous transfer matrix of the open-boundaryXXX model with
N inhomogeneous parameters sinkP1, . . . , sinkPN [11]. Let us denote the eigenvalue of
the transfer matrixT (u) by 3(u). Then, from the condition3(sinkP1) = 1 and the Bethe
ansatz equations for theXXX model, the Bethe ansatz equations of the 1D open-boundary
Hubbard model for the charge and spin parts are obtained, respectively.

Appendix B. Stability of the boundary solutions

Let us discuss explicitly the stability of the boundary solutions appearing in the ground state
and some excited states, both for the casesp > 0 andp < 0. We recall some notation
in the following. We have defined the symbolsκ and α by κ = |p| and α = sinhκ/u,
respectively. The symbolpcj is given bypcj = (j − 1)u +

√
1+ (j − 1)2u2 for some

integerj ; we note thatp = pcj corresponds toα = j − 1.
Let us introduce a useful formula in the following

θn(iγ u− v)+ θn(iγ u+ v) = i

2π
ln

(
(γ + n)2u2+ v2

(γ − n)2u2+ v2

)
for v > 0 (B.1)

whereγ > 0. We can show equation (B.1) by a similar method for the formula (10); we
take the branch of the logarithmic function, and use the relations arg(i(γ − n)u − v) =
arg(v − i(γ − n)u)− π and arg(i(γ + n)u− v) = arg(v − i(γ + n))+ π .

For the case ofp > 0, we may consider the three complex rootsk1, kL andv1 in the
following regions:

kL = π + iκ − iδL for α > 0

v1 = i(α − 1)u+ iη1 for α > 1

k1 = i log
(
(α − 2)u+

√
(α − 2)2u2+ 1

)
+ δ1 for α > 2.

(B.2)
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We call the boundary solutionsstablewhenδL, δ1 andη1 are very small. For convenience,
we use symbolsε1 andεL defined in the following:

sink1 = i(α − 1)u+ iε1 sinkL = i(α − 1)u+ iεL (B.3)

which are related toδ1 andδL by

εL = − coshκ × δL ε1 =
√
(α − 2)2u2+ 1× δ1.

Let us give explicitly some evaluations ofεL, η1 and ε1 for the case ofp > 0. We
assume thatp is not close to any of the critical pointspcj ’s. Then for the ground state and
some excited states we can show the following.

(1) When there is only one boundary solutionkL, we have

εL = O(p−2L). (B.4)

(2) When there are two boundary solutionskL andv1 and whenu > 1, we have

|εL − η1| = O

((
α

2− α
)−2N

)

|εL| = O

((
α

2− α
)2N

p−2L

)
.

(B.5)

(3) When there are three boundary solutionskL, k1 andv1 and whenu > 1, we have

|ε1− η1| = O(|z1|2L)

|εL − η1| = O

(
|z1|2L

(
α

α − 2

)−2N
)

|εL| = O

(
|z1|−2L

(
α

α − 2

)2N

p−2L

)
.

(B.6)

Herez1 denotes the following

z1 = exp(ik1) = −(α − 2)u+
√
(α − 2)2u2+ 1.

It is easy to see that|z1| < 1 for α > 2.
We note that evaluations (B.4)–(B.6) can be applied for the half-filled ground-state

solutions in the regions ofpc1 < p < pc2 (0 < α < 1), pc2 < p < pc3 (1 < α < 2), and
pc3 < p (2< α), respectively.

In the derivation of (B.5) and (B.6), we have assumed thatu > 1. In fact, applying the
formula (B.1) withγ = α − 1, we can make the following approximation whenu > 1:∑
j

∑
r=±1

θ(i(α − 1)u− r sinkj ) =
∑
j

i

2π
ln

(
α2u2+ sin2 kj

(α − 2)2u2+ sin2 kj

)

≈ iN

2π
ln

(
α2

(α − 2)2

)
. (B.7)

We recall here thatN is the number of electrons. The approximation (B.7) may not be
effective whenu is very small. However, it seems that it is nontrivial to evaluateεL andη1

for the weak-coupling case; more precise estimates on sin2 kj ’s should be necessary when
u is very small.

For the case when (B.5) is valid, the quantityεL should be very small if the following
inequality holds:∣∣∣∣p−1 α

2− α
∣∣∣∣ < 1. (B.8)
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For the region:pc2 < p < pc3 (1 < α < 2), however, the inequality (B.8) does not hold
for all values ofα satisfying 1< α < 2. Let us consider the case ofu � 1. Whenu is
very large, we can approximate 1/p by 1/(2αu) using the relation:p = αu+√1+ α2u2.
Then we can show that the inequality (B.8) holds under the following condition:

α < 2− 1

2u
. (B.9)

Thus, at least for the case ofu� 1, we have shown that the boundary solutionskL andv1

are stable when 1< α < 2− 1/(2u), where 2− 1/(2u) is very close to the critical point
α = 2. For the region:p > pc3 (α > 2), we can show, under the conditionu� 1, that the
boundary solutionskL andv1 are stable ifα > 2+ 1/(2u).

Similarly, we can discuss the case when the evaluation (B.6) is valid, where there are
the three boundary solutions,kL, k1 andv1. For the strong-coupling case, we can explicitly
show that the boundary solutions are stable ifα > 2+ 1/(2u); we have the following:

p−1|z1|−1 α

α − 2
< 1 whenα > 2+ 1/(2u). (B.10)

Let us now consider the boundary solutions for the case whenp < 0.

k′1 = iκ − iδ′1 for 0< α < 1

v′1 = i(α − 1)u+ iη′1 for 1< α < 2

k′2 = i log
(
(α − 2)u+

√
(α − 2)2u2+ 1

)
+ iδ′2 for 2< α.

(B.11)

Hereδ′1, δ′2 andη′1 should be very small. We recall that for the case ofp < 0, the boundary
solutionsk′1, k′2 and v′1 have been discussed in [15, 16]. For some convenience, we use
symbolsε′1 andε′2 defined in the following:

sink′1 = i(α − 1)u+ iε′1 sink′L = i(α − 1)u+ ε′2 (B.12)

which are related toδ′1 andδ′2 by

ε′1 = − coshκ × δ′1 ε′2 =
√
(α − 2)2u2+ 1× δ′2.

Applying the formula (B.1), we can evaluateε′1, η′1 andε′2 as follows.
(1) When there is only one boundary solutionk′1, we have

ε′1 = O(p−2L). (B.13)

(2) When there are two boundary solutionsk′1 andv′1 and whenu > 1, we have

|ε′1− η′1| = O

((
α

2− α
)−2N

)

|ε′1| = O

((
α

2− α
)−2N

p−2L

)
.

(B.14)

(3) When there are three boundary solutionsk′1, k′2 andv′1 and whenu > 1, we have

|ε′2− η′1| = O(|z′2|2L)

|ε′1− η′1| = O

(
|z′2|2L

(
α

α − 2

)−2N
)

|ε′1| = O

(
|z′2|2L

(
α

α − 2

)−2N

p−2L

)
.

(B.15)

Herez′2 is given by

z′2 = exp(ik′2) = −(α − 2)u+
√
(α − 2)2u2+ 1.
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We note that|z2| < 1 whenα > 2.
We note that evaluations (B.13)–(B.15) can be applied for the ground-state solutions in

the regions of−pc2 < p < −pc1 (0 < α < 1), −pc3 < p < −pc2 (1 < α < 2), and
p < −pc3 (2< α). We also note that in the derivations of (B.14) and (B.15) we have made
the same approximation as in (B.7).

When evaluations (B.13)–(B.15) are valid, the stability conditions for the boundary roots
are satisfied for anyp andu. Whenp < −1 andu > 0

|p|−1 < 1

∣∣∣∣p−1 α

α − 2

∣∣∣∣ < 1

∣∣∣∣p−1z′2
α

α − 2

∣∣∣∣ < 1 etc. (B.16)

However, we should remark that it is not certain whether (B.14) and (B.15) are valid also
for the weak-coupling case:u� 1.

We now discuss how the boundary solutions of the open-boundary Hubbard model can
be related to those of the interacting spin-1

2 fermion systems. We consider the case when
the bandwidth 4t is very large and the electron densityN/L is very small.

In order to show explicitly the effect of the large bandwidth, we replaceu andp in
equations (2), (4) and (5) byu/t andp/t , respectively. We recall that so far the energy
scale has been normalized such thatt = 1. Under the limit oft → ∞, the critical points
pc’s become the following:

pc1/t → 1

pc2/t → 1+ u/t
pc3/t → 1+ 2u/t.

(B.17)

The values obtained in the limit are equivalent to the critical points of the boundary
parameter [17] for the interacting spin-1

2 fermions.
When the electron densityN/L is very small, the Fermi wavenumberkF should be

very small. Therefore, we can make linear approximations for the charge rapidities such as
exp(ik) ≈ 1+ ik and sink ≈ k. Then, we can show that the boundary term in the Bethe
ansatz equations of the open-boundary Hubbard model corresponds to that of the interacting
spin-1

2 fermion system under the linear approximations
2k

2π
− 1

2π i
ln

(
1+ exp(ik)p/t

1+ exp(−ik)p/t

)
→− 2

2π
tan−1

(
k

−(1+ p/t)
)
. (B.18)

Hereafter we may renormalize the boundary chemical potentialp so that we can replace
p/t by p. Thus, we have explicitly shown that whent � 1 andN/L � 1, the Bethe
ansatz equations of the open-boundary 1D Hubbard model are reduced into those of the
interacting spin-12 fermion system [17] with the open-boundary condition.

Under the large bandwidth and small electron-density limit, the boundary solutions of
the open-boundary Hubbard model for the case ofp < 0 remain intact. We can make the
same approximation with (B.7), since sin2 kj ’s are very small. Here we note that the case
of large bandwidth corresponds to the weak-coupling case where the approximation (B.7)
may not be effective. When the density is very low, however, it is valid for some cases.
For example, we may consider the case whereN is fixed andL is proportional tot under
the limit t →∞ so that each momentumkj is proportional to 1/t . Then, we can apply the
approximation (B.7) for this case. In this way, the boundary solutions of the open Hubbard
model for the casep < 0 are related to those of the interacting spin-1

2 fermion system
discussed in [17].

For the case whenp > 0, however, the boundary solutions of the open Hubbard model
are not related to any solution of the interacting spin-1

2 fermion system. They exist only
when the band is half-filled. The physical condition is completely different from the low-
density case.
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Appendix C. Particle–hole transformation for the open-boundary Hubbard chain

Let us denote bydj,σ and d†j,σ , the annihilation and creation operators for the hole with
spin σ on thej th site, respectively. We define a particle–hole transformation as follows.
We replace the creation (annihilation) operator of electron with spinσ on thej th site by
the annihilation (creation) operator of hole with spinσ on thej th site forσ =↑,↓ and for
j = 1, . . . , L, and then multiplying by the gauge factor(−1)j the hole operators on thej th
site for all the sites:

c
†
j,σ → (−1)j dj,σ cj,σ → (−1)j d†j,σ . (C.1)

The ground-state energy forp > 0 is related to that ofp < 0 by the particle–
hole transformation; the sign of the boundary chemical potential is changed under the
transformation. Let us denote byE(N↓, N↑;U,p) the ground-state energy forN↓ down-
spin electrons,N↑ up-spin electrons with the Hubbard couplingU and the boundary chemical
potentialp. Then, applying the particle–hole transformation, we have the following:

E(L−M,L−M ′;U,p) = E(M,M ′;U,−p)+ (L−N)U + 2p. (C.2)

For the half-filled band, the ground-state energies forp > 0 andp < 0 are explicitly
related. Recall we assumeL is even. Then, we have the following:

E(L/2, L/2;U,p) = E(L/2, L/2;U,−p)+ 2p. (C.3)

On the other hand, it seems quite difficult to find out an explicit relation between the
sets of the charge (spin) rapidities for the casesp > 0 andp < 0. It seems as though there
might be a simple connection such as that for any momentumk in the ground state ofp > 0
the valueπ ± k corresponds to one of the ground-state solutions forp < 0. However, this
is not the case. There is no such relation between the boundary solutionsk′1, k′2 andv′1 for
p < −pc3 and the boundary solutionsk1, kL andv1 for p > pc3.

Some numerical solutions of the Bethe ansatz equations suggest that it can be quite
nontrivial to find any explicit relations between the sets of the half-filled ground-state
solutions for the casesp > 0 andp < 0. Details should be discussed in future papers.

Appendix D. Boundary solutions for some excited states

We discuss the quantum numbers of some excited states with the boundary solutions. We
assume the adiabatic hypothesis for the quantum numbers.

Let us consider an excited state which has only real-valued momenta and rapidities when
p = 0. We denote by1c

0 (1s
0) the set of the quantum numbers for the momenta (rapidities).

Let us denote by1c(1s) the set of the quantum numbers of real-valued momenta in the
excited state at a given value ofp. In general,1c(1s) depends onp. For the excited
state we write by1c

im (1s
im) the set of the quantum numbers of complex-valued momenta

(rapidities). It is useful to introduce the notation for holes; we denote by1c
hole (1s

hole) the
set of the quantum numbers of holes for the real-valued momenta (rapidities). Then, we
can defineZcL(k), Z

s
L(v), z

c
B(k), andzsB(v) also for the excited state; in the formulae (4)

we replace1c
g and1s

g by 1c and1s , respectively. Similarly to the ground state, we can
evaluate theImin’s for the excited state as follows:

Imin = zcB(0)+ 1 Imax= L+ zcB(π)− 1

Jmin = zsB(0)+ 1

Jmax= (N −Nim)− (M −Mim)+ (zsB(∞)− 1
2).

(D.1)
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Here Nim and Mim denote the number of complex-valued charge and spin rapidities
(boundary solutions), respectively. We recall thatN andM denote the number of electrons
and that of down-spins, respectively.

For an illustration, let us discuss the boundary solutions of an excited state for the case
whenp < 0. Hereafter we assumeN < L. We consider the excited state ofN electrons
with M down-spins where the quantum number atp = 0 is given by the following:

1c
0 = {1, 3, 4, . . . , N + 1} 1s

0 = {1, 2, . . . ,M}
1c

im = 1s
im = φ.

(D.2)

It follows from (D.1) that whenp = 0 the sets of holes are given by

1c
hole= {2, N + 2, N + 3, . . . , L} 1s

hole= {M + 1, . . . , N −M}. (D.3)

Here we note that whenL = N + 1, then we have1c
hole = {2}, and also that whenN is

even andM = N/2, then we have1s
hole = φ. Applying the formulae (10) and (D.1), we

can show that there are four critical points given by−pcj for j = 1, . . . ,4. We have the
following five cases whenp < 0.

(1) For−pc1 < p < 0, we have no boundary solution. We have a hole atI = 2.

1c
im = 1s

im = φ
1c = {1, 3, 4, . . . , N + 1} 1s = {1, 2, . . . ,M}
1c

hole= {2, N + 2, . . . , L} 1s
hole= {M + 1, . . . , N −M}.

(2) For−pc2 < p < −pc1, we havek′1 and a hole atI = 2.

1c
im = {1} 1s

im = φ
1c = {3, 4, . . . , N + 1} 1s = {1, 2, . . . ,M}
1c

hole= {2, N + 2, . . . , L} 1s
hole= {M + 1, . . . , N −M}.

(3) For−pc3 < p < −pc2, we havek′1 andv′1 and a hole atI = 2.

1c
im = {1} 1s

im = {1}
1c = {3, 4, . . . , N + 1} 1s = {2, 3, . . . ,M}
1c

hole= {2, N + 2, . . . , L} 1s
hole= {M + 1, . . . , N −M}.

(4) For −pc4 < p < −pc3, we havek′1 and v′1 but no hole atI = 2. A new hole
appears atI = L+ 1.

1c
im = {1} 1s

im = {1}
1c = {3, 4, . . . , N + 1} 1s = {2, 3, . . . ,M}
1c

hole= {N + 2, . . . , L+ 1} 1s
hole= {M + 1, . . . , N −M}.

(5) Forp < −pc4, we havek′1 andv′1. A new hole appears atJ = 1.

1c
im = {1} 1s

im = {1}
1c = {3, 4, . . . , N + 1} 1s = {2, 3, . . . ,M}
1c

hole= {N + 2, . . . , L+ 1} 1s
hole= {1,M + 1, . . . , N −M}.

We recallpc4 = 3u+
√

1+ (3u)2 .
Let us consider the ground state and the excited state discussed in the last paragraph.

For the two regions−pc4 < p < −pc3 andp < −pc4, the ground-state solutions have the
same structure, while the excited state solutions have different structures; the excited state
has two boundary solutionsk1 and v1 for both of the regions, however, it has a different
numbers of holes in the spin rapidities for each of the two regions. Thus, it is suggested that
there can be more subtle points in the boundary excitations than had been described in [17]
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for those of the interacting spin-1
2 fermion system. However, it seems that some physical

interpretations similar to those in [17] should be valid also for the boundary excitations
of the open-boundary Hubbard model. Some precise investigations should be discussed in
later publications.
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